Scoping review of prevalence of neurologic comorbidities in patients hospitalized for COVID-19

Authors: Collin Herman¹, MD; Kirby Mayer², DPT, PhD; Aarti Sarwal¹, MD

Affiliations:
1. Department of Neurology, Wake Forest Baptist Medical Center, Winston Salem, NC
2. Department of Physical Therapy, University of Kentucky College of Health Sciences, Lexington, KY

Corresponding Author:
Collin Herman, MD
cmherman@wakehealth.edu

Search Terms: Covid-19, coronavirus, neurological, complication, comorbidity

Submission Type: Review Article
Title Character Count: 96
Number of Tables: 3
Number of Figures: 1
Word Count of Abstract: 204
Word Count of Manuscript: 1671

Statistical Analysis: Conducted by Dr. Kirby Mayer at the University of Kentucky College of Health Sciences

Study Funding:
No targeted funding reported.

Disclosure:
The authors report no relevant disclosures.
Abstract

Objective: The emergence of COVID-19 presents a challenge for neurologists caring for patients with pre-existing neurological conditions hospitalized for COVID-19 or for evaluation of patients who suffer neurological complications during COVID-19 infection. We conducted a scoping review of available literature on COVID-19 to assess the potential impact on neurologists in terms of prevalent comorbidities and incidence of new neurological events in patients hospitalized with COVID-19.

Methods: We searched Medline/PubMed, CINAHL (EBSCO), and SCOPUS databases for adult patients with pre-existing neurologic disease that were diagnosed and hospitalized for COVID-19, or reported incidence of secondary neurologic events following diagnosis of COVID-19. Pooled descriptive statistics of clinical data and comorbidities were examined.

Results: Among screened articles, 322 of 4014 (8.0 %) of hospitalized patients diagnosed and treated for COVID-19 had a pre-existing neurological illness. Four retrospective studies demonstrated an increased risk of secondary neurological complications in hospitalized patients with COVID-19 (incidence of 6%, 20% and 36.4%, respectively). Inconsistent reporting and limited statistical analysis among these studies did not allow for assessment of comparative outcomes.

Conclusion: Emerging literature suggests a daunting clinical relationship between COVID-19 and neurological illness. Neurologists need to be prepared to reorganize their consultative practices to serve the neurological needs of patients during this pandemic.
Introduction

The recent outbreak of SARS-CoV-2, designated “COVID-19” by the World Health Organization (WHO), was officially declared a pandemic on March 11, 2020 and is expected to continue to spread globally.1,2 The disease spectrum ranges from largely asymptomatic infections with or without mild pneumonia to severe hypoxic respiratory failure with multi-organ dysfunction and/or shock.2 COVID-19 is spread through droplets with a highly variable incubation period (5-14 days) with a case-fatality rate of 1.8-3.4%3. The highly transmissible nature, asymptomatic carriage, and the wide spectrum of illness make this disease challenging for healthcare systems. Neurologists face the daunting task of caring for patients with pre-existing neurological disease that contract the virus, infected individuals who present with neurological emergencies requiring neurological consultation, and patients with COVID-19 who develop secondary neurological complications such as ischemic stroke, seizures, or encephalopathy during the course of their illness.4-6 This necessitates personal protective equipment (PPE) for emergent neurological consultations as well as consideration of telehealth alternatives to reduce physical exposure for neurologists. A recent meta-analysis examining the prevalence of comorbidities in COVID-19 infections surprisingly reported no neurological comorbidities and risk stratification scores that qualify patients for therapies like chloroquine have not yet incorporated neurological illness.7,8 Hence, we conducted a scoping review of available literature on COVID-19 to assess the prevalence of patients with pre-existing neurologic disease and the incidence of neurological complications following COVID-19 diagnosis.
Materials and Methods

The authorship team designed a primary literature search to understand the incidence of patients with pre-existing neurological disease that were diagnosed with and hospitalized for COVID-19, or had reported incidence of secondary neurologic events following diagnosis of COVID-19.

Eligibility Criteria: Research studies were selected for inclusion if they met the following criteria: 1) adult patients (≥18 years of age); 2) diagnosed and received inpatient treatment for COVID-19; and 3) reported data on pre-existing neurological comorbidities or neurological events occurring during the course of the illness. Additional articles were included through a “gray search” via Google search engine and manual review of references listed articles to find relevant articles. Studies were not restricted according to design and had to be available in the English language. Due to the rapidly evolving state of the COVID-19 pandemic, non-peer reviewed articles available via pre-acceptance open access were included. We did not find any pediatric literature relevant to this review.

Information Sources and Search Strategy: We searched electronic databases: Medline/PubMed, CINAHL (EBSCO), and Scopus from January 1, 2020 to April 15, 2020. We summarize the comprehensive search strategies with Boolean operators in Table 1.

Study Selection and Data Collection: At least two independent reviewers independently screened all publications, including title and abstract, to determine if studies met
inclusion criteria. After agreement on included manuscripts, one reviewer independently retrieved comorbidity and clinical variables from the selected manuscripts.

Statistical Analysis: Pooled descriptive statistics of clinical data and comorbidities were examined. The primary goal of this scoping review was to report on the incidence of neurological comorbidities and occurrence of secondary neurological events; as such, meta-analysis was not performed.

Results

Pre-existing neurologic disease and COVID-19 diagnosis: Articles were screened by title and abstract. Twenty-two studies met the inclusion criteria (Figure 1). Twenty retrospective studies, one prospective observational trial, and one randomized controlled trial were included. Twenty studies were conducted in China, one in Italy, and one in France. In total, 4014 patients were included with a mean age 55.6 ± 8.4 and 57% male predominance. The pooled percentage for having a pre-existing neurological disease was 8.0% (n=322/4014, range of 0-40% for individual studies; Table 2). The presence of pre-existing neurological disease was frequently not specified and grouped only as “cerebrovascular disease,” “nervous system disease,” or history of prior “stroke.” Additionally, five studies grouped cerebrovascular disease and cardiovascular disease together, potentially inflating the incidence.

We found headache to be a commonly reported symptom at presentation as it was mentioned in 22 articles. However, headache was not reported as a comorbidity and hence not
included. Other neurological comorbidities rarely mentioned in screened articles included dementia and Parkinson’s disease (Table 1). We did not find a mention of anosmia in any searched scientific literature. We attempted but were unable to assess comparative outcomes from COVID-19 in patients with pre-existing neurological disease due to inconsistency in reporting, potential overlap in multiple studies reporting similar patients, and limited statistical analysis of the included studies. However, a few studies assessed the risk of worse patient outcomes and considered demographic and clinical variables including comorbidities as predictors in the analysis.

Among all patients with COVID-19, those requiring treatment in an intensive care unit (ICU) were more likely to be older, male sex, and have an underlying comorbidity, specifically cerebrovascular disease (16.7% vs 1.0%).

Similarly, patients that did not have clinical improvement or remission of symptoms within the first ten days of hospitalization had higher incidence of pre-existing cerebrovascular disease (8.2% vs 0%). Patients with COVID-19 and underlying cerebrovascular disease were also more likely to develop acute respiratory distress syndrome (ARDS) (11% vs 0%) in a cohort of 109 patients in Wuhan. Univariate analysis in a prospective cohort of 179 patients with COVID-19 pneumonia showed that pre-existing cardiovascular or cerebrovascular disease was predictive of mortality (OR =11.059, 95% CI = 4 – 30). We also observed a reported co-incidence of Parkinson’s disease in COVID-19 similar to previously reported with SARS-CoV. This correlation has been previously explored in several publications.
Incidence of secondary neurological disease after COVID-19 (Table 3): We found ten publications reporting secondary neurological events in patients diagnosed with COVID-19. Four retrospective studies demonstrated a relationship between secondary neurological events and treatment for COVID-19. One study demonstrated that 36% of 214 patients hospitalized for COVID-19 developed neurological symptoms or secondary cerebral events. Another study demonstrated that 6% of 221 patients hospitalized for COVID-19 suffered an acute cerebrovascular event (ischemic stroke, cerebral thrombosis, and/or cerebral hemorrhage) while undergoing treatment. Hypoxic ischemic encephalopathy was reported in 20% of patients in another case series. A French study reported confusion in 65% patients and diffuse corticospinal signs in 67% patients during hospitalization. This study also reported dysexecutive syndrome in 33% of patients at discharge. Among 13 patients undergoing MRI brain in this study, 3 had acute/subacute ischemic strokes, 11 had bilateral frontotemporal hypoperfusion, and 8 had leptomeningeal enhancement with negative CSF RT-PCR. Older age, more severe illness, and underlying cardiovascular or cerebrovascular disease were risk factors for secondary cerebrovascular events. Further case reports have described various neurological illnesses including acute necrotizing encephalopathy, ischemic strokes, seizures, intracranial hemorrhage, Guillain Barre Syndrome, and meningo-encephalitis.

Discussion

These data suggest that patients with underlying neurologic impairment are vulnerable to more severe illness when infected with COVID-19. We saw a trend towards patients with pre-existing cerebrovascular disease having higher risk of ICU admission as well as overall
mortality. In addition, patients hospitalized with COVID-19 showed a 6-36% incidence of neurological events during the course of their illness.

Whether the trend towards worse outcomes is related to vulnerability from neurological disorders or the presence of other cardiovascular comorbidities leading to neurological complications in these patients is difficult to discern without further data. The neurotropism of the coronavirus itself is being investigated as a possible mechanism behind the higher incidence of brainstem-mediated cardiopulmonary complications in patients who have more severe disease.

Experimental data including autopsy samples of human brain tissue suggest a neuroinvasive potential of respiratory pathogens including coronaviruses in patients with and without pre-existing neurologic disease. Published case series of other corona respiratory viruses like MERS-CoV and SARS-CoV in prior years have listed similar neurological complications including intracranial hemorrhage, ischemic stroke, polyneuropathy, Bickerstaff’s encephalitis, and Guillain Barre Syndrome.

Further data on the vulnerability of patients with neurological illness may be impactful in targeting this population for proactive viral screening. Risk stratification scores that identify patients at high risk of deterioration or that qualify patients for empiric therapies like hydroxychloroquine also need to reconsider adding patients with cerebrovascular disease.
The burden of neurological events occurring in hospitalized patients demonstrates the need for appropriate infrastructure to facilitate neurological assessments in this population that may be deterred by the cumbersome nature of protection required for clinical assessments. This infrastructure may include a robust supply of PPE for neurologists to assess patients, telemedicine alternatives for remote assessment of bedside exam, and protocols for transporting these patients for neuroimaging including emergent evaluation for cerebrovascular disease.

This scoping review has several limitations. Our analyses are limited by small sample sizes, even smaller incidences of neurological comorbidities, lack of long-term follow-up, and the possibility of overlap in populations described in reviewed articles potentially biasing the results. The studies included in this scoping review also have inherent bias based on the study designs. The retrospective nature of most of the included studies potentially present selection and presentation bias. Retrospective studies are subject to misclassification bias with limited ability to control for all potential confounders. Additionally, retrospective studies require large sample sizes to generate statistical power to determine different in-study endpoints. We did not specifically perform a risk of bias assessment in this scoping review, but instead choose to focus on the overall prevalence. Lack of neurological history reported in medical records by an overstretched health care system, lack of exhaustive reporting of neurological comorbidities in acutely reported publications, and challenges of neurological assessments or neuroimaging in patients with COVID-19 may have contributed to the lower reported incidence of neurological comorbidities or secondary neurological events in hospitalized patients. Two meta-analyses reporting comorbidities in COVID-19 and MERS-CoV failed to report neurological
comorbidities, highlighting challenges of collecting such data.7,45 We were unable to perform meta-analysis or predict worse outcomes based on comorbidity status.

Conclusions

The culmination of studies indicates a daunting clinical relationship between COVID-19 and secondary neurological complications and needs a concerted effort by neurologists to reorganize consultative practices to serve the neurological needs of patients during this pandemic. More sensitive data extraction measures and comprehensive clinical documentation are required to better understand the prevalence of neurological comorbidities and pre-existing neurological disorders in patients with COVID-19.
Appendix. Authors

<table>
<thead>
<tr>
<th>Author</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collin Herman, MD</td>
<td>Department of Neurology</td>
<td>Drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td></td>
<td>Wake Forest Baptist Medical Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Winston Salem, NC</td>
<td></td>
</tr>
<tr>
<td>Kirby P. Mayer, DPT, PhD</td>
<td>Department of Physical Therapy</td>
<td>Major role in the acquisition of data; performed statistical review of results; interpreted the data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td></td>
<td>University of Kentucky</td>
<td></td>
</tr>
<tr>
<td></td>
<td>College of Health Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lexington, KY</td>
<td></td>
</tr>
<tr>
<td>Aarti Sarwal, MD</td>
<td>Department of Neurology</td>
<td>Designed and conceptualized study; major role in the acquisition of data; interpreted the data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td></td>
<td>Wake Forest Baptist Medical Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Winston Salem, NC</td>
<td></td>
</tr>
</tbody>
</table>
References

21 Li, YaW, Mengdie and Zhou, Yifan and Chang, Jiang and Xian, Ying and Mao, Ling and Hong, Candong and Chen, Shengcai and Wang, Yong and Wang, Hailing and Li, Man and Jin, Huijuan and Hu, Bo, (2020). Acute Cerebrovascular Disease Following COVID-19: A Single Center, Retrospective, Observational Study SSRN.
Figure 1. Prisma Flow Diagram of the Selection Process

Citations screened (N = 643):
- PubMed (341)
- CINAHL (242)
- Scopus (37)
- Grey Literature (23)

Excluded (n = 288; 45%):
- Duplicate reports (288)

Manuscripts reviewed by title and abstract (n = 355)

Excluded (n = 274; 77%):
- Did not meet eligibility criteria (274)

Citations reviewed with full text (n = 81)

Excluded (n = 49; 60%):
- No clinical data (38)
- No neurologic comorbidity (5)
- Pediatric populations (2)
- Not admitted to hospital (2)
- Not available in English (2)

Full-text studies included (n = 32):
- Reported neurologic comorbidities (21)
- Reported secondary neurologic events (10)
- Reported both comorbidities and new neurologic findings (1)
Table 1: Electronic Database Search Strategy

<table>
<thead>
<tr>
<th>Aim</th>
<th>Search Strategy with Boolean operators</th>
<th>Results(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>("covid-19") AND (neuro* OR neurol manifestation)</td>
<td>190 156 8</td>
</tr>
<tr>
<td>Prevalence of neurologic comorbidity in patients hospitalized for</td>
<td>("covid-19") AND (brain* OR brain infarct)</td>
<td></td>
</tr>
<tr>
<td>Covid-19(^2)</td>
<td>("covid-19") AND (stroke)</td>
<td>6 5 0</td>
</tr>
<tr>
<td></td>
<td>("covid-19") AND (seizure OR epilepsy)</td>
<td>2 3 0</td>
</tr>
<tr>
<td></td>
<td>("covid-19") AND (encephalitic OR encephalopathy)</td>
<td>15 3 2</td>
</tr>
<tr>
<td></td>
<td>("covid-19") AND (coma OR unconsciousness)</td>
<td>5 2 1</td>
</tr>
<tr>
<td></td>
<td>("covid-19") AND (cerebral edema OR “cereb*”)</td>
<td>22 7 0</td>
</tr>
<tr>
<td></td>
<td>("covid-19") AND (cranial hemorrhage OR intracranial hemorrhage OR subarachnoid hemorrhage)</td>
<td>1 2 0</td>
</tr>
<tr>
<td></td>
<td>("covid-19") AND (migraines OR “headache”)</td>
<td>28 20 18</td>
</tr>
<tr>
<td></td>
<td>("covid-19") AND (neuropathy OR neuromuscular OR myasthenia)</td>
<td>6 2 0</td>
</tr>
<tr>
<td></td>
<td>("covid-19") AND (dementia or neurocognitive disorder)</td>
<td>3 1 1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>341 242 37</td>
</tr>
</tbody>
</table>

\(^1\)Search terms were applied with date filter of Jan 1, 2020 to April 12, 2020.
Table 2: Prevalence of pre-existing neurologic diseases for patients hospitalized for COVID-19

<table>
<thead>
<tr>
<th>First Author</th>
<th>Study Design</th>
<th>Location</th>
<th>Sample</th>
<th>Diagnosis of COVID</th>
<th>Age (mean ± SD)</th>
<th>Male (%)</th>
<th>Neuro*comorbidity (%)</th>
<th>Description of neuro*comorbidity</th>
<th>Clinical Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guan^6</td>
<td>Retro</td>
<td>552 hospitals in 30 provinces</td>
<td>1099</td>
<td>Confirmed with RT-PCR</td>
<td>44.2 ± 23.9</td>
<td>58</td>
<td>15 (1.4%)</td>
<td>cerebrovascular disease</td>
<td>Comorbiditity was more common in severe cases of COVID-19 (38.2% vs. 22.5%)</td>
</tr>
<tr>
<td>Wu^10</td>
<td>Retro</td>
<td>Wuhan Jinyintan Hospital, in China</td>
<td>201</td>
<td>Confirmed with RT-PCR</td>
<td>51.5 ± 17.9</td>
<td>64</td>
<td>7 (3.5%)</td>
<td>nervous system disease</td>
<td>Older patients with comorbidities of hypertension and diabetes more likely to develop ARDS</td>
</tr>
<tr>
<td>Mo^11</td>
<td>Retro</td>
<td>Zhongnan Hospital, Wuhan University</td>
<td>155</td>
<td>Confirmed with RT-PCR</td>
<td>53.5 ± 10.3</td>
<td>55</td>
<td>7 (4.5%)</td>
<td>cerebrovascular disease</td>
<td>Patients with baseline cerebrovascular more likely to be in “refractory group”</td>
</tr>
<tr>
<td>Cao^30</td>
<td>RCT</td>
<td>Jin Yin-Tan Hospital, Wuhan, China</td>
<td>199</td>
<td>Confirmed with RT-PCR</td>
<td>58.5 ± 11.2</td>
<td>60</td>
<td>13 (6.5%)</td>
<td>cerebrovascular disease</td>
<td>Statistical analysis focused on intervention</td>
</tr>
<tr>
<td>Wang^14</td>
<td>Retro</td>
<td>First Affiliated Hospital of Zhengzhou University Zhengzhou, China</td>
<td>18</td>
<td>Confirmed with RT-PCR</td>
<td>40.5 ± 7.5</td>
<td>56</td>
<td>2 (11.1%)</td>
<td>stroke</td>
<td>2 patients with history of stroke; time or severity of stroke not documented</td>
</tr>
<tr>
<td>Shi^13</td>
<td>Retro</td>
<td>Wuhan Jinyintan hospital or Union Hospital of Tongji Medical College, Wuhan, China</td>
<td>81</td>
<td>next-generation sequencing or RT-PCR</td>
<td>49.5 ± 11</td>
<td>52</td>
<td>6 (7%)</td>
<td>cerebrovascular disease</td>
<td>Older age, male sex, and presence of comorbidity increase risk of poor prognosis</td>
</tr>
<tr>
<td>Wang^12</td>
<td>Retro</td>
<td>Zhongnan Hospital of Wuhan University, Wuhan, China</td>
<td>138</td>
<td>Confirmed with RT-PCR</td>
<td>56.5 ± 20.2</td>
<td>54</td>
<td>7 (5.1%)</td>
<td>cerebrovascular disease</td>
<td>Patients receiving ICU care were significantly older (66 vs 51) and had underlying cerebrovascular disease (16.7% vs 1.0%)</td>
</tr>
<tr>
<td>Deng^15</td>
<td>Retro</td>
<td>Mainland China</td>
<td>26</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>4 (15.4%)</td>
<td>2 (7.7%)</td>
<td>cerebral infarction Parkinson’s disease</td>
</tr>
<tr>
<td>Wang^16</td>
<td>Retro</td>
<td>Wuhan, China</td>
<td>17</td>
<td>NR</td>
<td>71.5 ± 11.5</td>
<td>76</td>
<td>3 (18%)</td>
<td>2 (12%)</td>
<td>Cerebral infarction Parkinson’s Disease</td>
</tr>
<tr>
<td>Chen^17</td>
<td>Retro</td>
<td>Jinyintan Hospital in Wuhan, China</td>
<td>99</td>
<td>Confirmed with RT-PCR</td>
<td>55.5 ± 13.1</td>
<td>68</td>
<td>40 (40%)</td>
<td>1 (1%)</td>
<td>cardio-cerebrovascular disease, nervous system disease</td>
</tr>
<tr>
<td>Liu^18</td>
<td>Retro</td>
<td>Central Hospital, Wuhan</td>
<td>109</td>
<td>Confirmed with RT-PCR</td>
<td>55 ± 11</td>
<td>54</td>
<td>6 (5.5%)</td>
<td>cerebrovascular disease</td>
<td>Older patients with severe COVID-19 more likely to develop neurological complication</td>
</tr>
</tbody>
</table>
Chen\(^{19}\) | Retro | Shanghai Public Health Clinical Center (SPHCC), Shanghai, China | 249 | Confirmed with RT-PCR | 51 ± 10 | 51 | 55 (21.7%) | cardio-cerebrovascular disease | Older age and presence of any comorbidity associated with ICU stay

Mao\(^{20}\) | Retro | Union Hospital of Huazhong University of Science and Technology, Wuhan, China. | 214 | Confirmed with RT-PCR | 52.8 ± 15 | 41 | 15 (7.0) | cardio-cerebrovascular disease | Cerebrovascular disease prevalence was not different in severe and non-severe cases

Li\(^{21}\) | Retro | Union Hospital, Wuhan, China | 221 | Confirmed with RT-PCR | 53.3 ± 16 | 59 | 17 (7.7) | cardio-cerebrovascular disease | Older patients with severe COVID-19 more likely to develop neurological complications

Filatov\(^{22}\) | Retro | Florida Atlantic University Hospital, Boca Rota, FL | 1 | NR | 74 | CR | 1 (100) | cardioembolic stroke, Parkinson Disease | Case report of older male requiring ICU care with mechanical ventilation; developed encephalopathy

Onder\(^{23}\) | Retro | Italy | 355 | Confirmed with RT-PCR | NR | NR | 24 (6.8) | dementia stroke | Presence of comorbidities may have increased mortality risk

Chen\(^{24}\) | Retro | Tongji Hospital, Wuhan, China | 274 | Confirmed with PT-PCR | 60 (11.5) | 62 | 4 (1.5) | cerebrovascular disease | Patients that died were older, predominantly male, and had pre-existing comorbidities

Du\(^{29}\) | Prospec | Wuhan Pulmonary Hospital, Wuhan, China | 179 | Confirmed and probable cases | 57.6 (13.7) | 54% | 29 (16.2) | cardio-cerebrovascular disease | Older age (>65 years old) and presence of cardio-cerebrovascular disease was predictive of mortality

Du\(^{26}\) | Retro | Hannan Hospital and Wuhan Union Hospital | 85 | Confirmed OR contact history | 65.8 (14.2) | 73 | 7 (8.2) | cerebrovascular disease | In 85 patients that died from COVID-19, most cases were males over age of 50 and had pre-existing comorbidity

Xu\(^{25}\) | Retro | Multiple hospitals in Zhejiang, China | 62 | Confirmed with RR-PCR | 42 (14.7) | 56 | 1 (2) | cerebrovascular disease | Retrospective study of the clinical characteristics of cohort of patients with severe acute respiratory syndrome and COVID-19

Guo\(^{27}\) | Retro | Wuhan Union hospital of Tongji Medical College, Huazhong University of Science & Tech | 174 | Confirmed with PT-PCR | 58 (8.5) | 44 | 13 (7.5) | cerebrovascular disease | Retrospective study focused on diabetes as a risk factor of the progression and prognosis of COVID-19

Helms\(^{28}\) | Retro | Strasbourgm France | 58 | Confirmed with RT-PCR | 63 | NR | 7(12) | TIA, partial epilepsy, mild cognitive impairment | Retrospective study reporting neurological features in COVID-19 patients

Totals | **4014** | **55.68 (8.4)** | **57** | **322 (8.0%)**

RCT: randomized control trial; ICU: intensive care unit; ARDS: acute respiratory distress syndrome.
Table 3: Incidence and risk of secondary neurologic events during respiratory corona virus infections

<table>
<thead>
<tr>
<th>First Author</th>
<th>Study design</th>
<th>Location</th>
<th>Sample</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li**+1</td>
<td>Retro</td>
<td>Wuhan, China</td>
<td>221</td>
<td>13 (6%) patients suffered neurologic complication: 11 (5%) acute ischemic stroke, 1 (0.5%) cerebral venous sinus thrombosis, and 1 (0.5%) cerebral hemorrhage. Patients with event were older with higher severity of illness and had pre-existing hypertension or history of cerebrovascular disease.</td>
</tr>
<tr>
<td>Mao**+2</td>
<td>Retro</td>
<td>Wuhan, China</td>
<td>214</td>
<td>78 (36.4%) had neurologic manifestations including 5 reports of ischemic stroke, 1 patient suffered cerebral hemorrhage, 23 reports of neuromuscular injury. Patient with higher severity of illness were more likely to develop neurological symptoms.</td>
</tr>
<tr>
<td>Chen**+24</td>
<td>Retro</td>
<td>Wuhan, China</td>
<td>274</td>
<td>23 (20%) developed hypoxic encephalopathy after diagnosis COVID-19. Older male patients with chronic hypertension and other comorbidities had higher mortality.</td>
</tr>
<tr>
<td>Helms**+28</td>
<td>Retro</td>
<td>Strasbourg, France</td>
<td>58</td>
<td>58 patients with median age 63 years. 26 of 40 patients examined after weaning sedation had confusion. 39 (67%) patients had diffuse corticospinal signs. 15 of 45 discharged (33%) had dysexecutive syndrome. 11 of 13 patients with MRI had bilateral frontotemporal hypoperfusion and 8 had leptomeningeal enhancement. 3 patients had acute/subacute ischemic stroke. 8 patients had EEG with nonspecific findings. 7 patients had CSF studies with all studies negative for RT-PCR, 1 with elevated IgG, 2 with elevated oligoclonal bands, 1 with elevated IgG and protein.</td>
</tr>
<tr>
<td>Poyiadji**+24</td>
<td>Retro</td>
<td>Detroit, MI, USA</td>
<td>1</td>
<td>Female patient (late fifties), diagnosed with acute necrotizing encephalopathy with CT images revealing symmetric hypopatenuation within the bilateral medial thalami and brain MRI showing hemorrhagic ring enhancing lesions.</td>
</tr>
<tr>
<td>Zhai**+25</td>
<td>Retro</td>
<td>Hubei Provincial Hospital</td>
<td>1</td>
<td>79 year old male diagnosed with acute ischemic stroke (lacunar infarction on CT imaging) after presenting to hospital with right extremity weakness and diagnosed with stroke and found to be COVID-19 positive.</td>
</tr>
<tr>
<td>Filatov**+22</td>
<td>Retro</td>
<td>Boca Raton, FA, USA</td>
<td>1</td>
<td>74 year old male with history of atrial fibrillation, cardioembolic stroke, Parkinson’s disease, chronic obstructive pulmonary disease, and cellitits presented to department with cough and altered mentation, found to be encephalopathic, EEG demonstrated bilateral slowing and focal slowing in left temporal region.</td>
</tr>
<tr>
<td>Karimi**+26</td>
<td>Retro</td>
<td>Sari, Iran</td>
<td>1</td>
<td>30 year old female (previously healthy) admitted with tonic-clonic seizures; 5 seizures in 8-hour period. CT and MRI of head was negative.</td>
</tr>
<tr>
<td>Sharifi-Razavi**+27</td>
<td>Retro</td>
<td>Sari, Iran</td>
<td>1</td>
<td>79 year old male with 3 days of fever and cough, presented to the hospital and suffered acute loss of consciousness in emergency room. Brain CT showed massive intra-cerebral, intra-ventricular and subarachnoid hemorrhage. RT-PCR confirmed COVID-19.</td>
</tr>
<tr>
<td>Moriguchi**+28</td>
<td>Retro</td>
<td>Yamanashi, Japan</td>
<td>1</td>
<td>24 year old male with symptoms of headache, fatigue, and fever; 9 days after initial onset he was found down with loss of consciousness; multiple epileptic seizures, diagnosed with meningitis, ventriculitis, and encephalitis.</td>
</tr>
<tr>
<td>Zhao**+26</td>
<td>Retro</td>
<td>Wuhan, China</td>
<td>1</td>
<td>Travel history to Wuhan and possibly presented with Guillian Barre syndrome attributed to COVID-19.</td>
</tr>
</tbody>
</table>

ICU: intensive care unit; EMG/NCV: electromyography/nerve conduction velocity
Scoping review of prevalence of neurologic comorbidities in patients hospitalized for COVID-19
Collin Herman, Kirby Mayer and Aarti Sarwal
Neurology published online April 28, 2020
DOI 10.1212/WNL.0000000000009673

This information is current as of April 28, 2020

Updated Information & Services
including high resolution figures, can be found at:
http://n.neurology.org/content/early/2020/04/24/WNL.0000000000009673.full

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
COVID-19
http://n.neurology.org/cgi/collection/covid_19

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/about/about_the_journal#permissions

Reprints
Information about ordering reprints can be found online:
http://n.neurology.org/subscribers/advertise

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2020 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.